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Numerical simulations are conducted to compute the aerodynamic flowfield response that is observed for a
NACA0012 airfoil that undergoes prescribed harmonic oscillation at transonic Mach numbers. Large shock
oscillations are observed for certain combinations of Mach number and steady mean angle of attack. These are
termed as buffet in this paper. Prescribing an airfoil oscillation about the buffeting flowfield reveals a nonlinear
interaction between the flowfields induced by the buffet and airfoil motion, respectively. At low airfoil-oscillation
amplitudes, the time histories of the aerodynamic coefficients exhibit two frequencies, that of the buffet and that of the
oscillating airfoil. As the airfoil amplitude increases, the flowfield response at the buffet frequency decreases. Beyond
a certain level of airfoil amplitude, lock-in occurs: the flowfield response at the buffet frequency vanishes, and the flow
system response predominantly assumes the frequency of the airfoil motion. The airfoil amplitude that will cause
lock-in is dependent on the ratio between the frequency of the airfoil oscillation and the buffet frequency. The closer
these frequencies are, the smaller the airfoil-oscillation amplitude that will cause lock-in. There is a broad analogy
between this flow phenomenon and the flowfield of the von Karman vortex street found behind a cylinder with the
cylinder undergoing a prescribed oscillation. This paper reviews that phenomenon, suggests an aerodynamic gain-
phase model for the lock-in region, and suggests a possible relation between this flow mechanism and limit-cycle

oscillation.

Nomenclature leading-edge vortex instability of a B1-A wing of high sweep, LCO
c = chord length driven by shock-induced trailing-edge separation of an F-16 wing,
f = frequency, Hz and buffet of F-16 ventral fins. The F-16 LCO, which was
f = reduced frequency encountered during a windup turn of an aircraft carrying two
M = Mach number underwing missiles and a new wingtip launcher, led to wind-tunnel
U, = velocity, m/s testing in which an F-16 wing model was oscillated at different
o = angle of attack, deg frequencies, amplitudes, mean angles of attack, and Mach numbers
@, = mean angle of attack, deg [2]. The database of nonlinear aerodynamic pressure distributions

Introduction

OR certain combinations of Mach number, airfoil profile, and

mean angle of attack, an aerodynamic flow may exhibit large
shock oscillations even in the absence of any airfoil motion. This is
sometimes termed buffet and that is the definition used here. Of
course, if the flow is turbulent, there are always small-scale and
relatively-small-amplitude fluctuations in the flow. The larger fluid
oscillations of interest here are typified by large shock motions and
are thought to often, if not always, be a result of shock-induced flow
separation. The flow oscillations usually have a characteristic
frequency that is called the buffet frequency and this is usually
expressed as a nondimensional frequency. Given that these large
shock oscillations occur, it is of interest to consider the effect on these
of forcing the fluid by oscillating the airfoil in a prescribed motion of
a certain amplitude and frequency. This airfoil-motion frequency and
the buffet frequency and their relationship play a central role in
determining the total fluid oscillation that then occurs.

Early encounters of limit-cycle oscillations (LCO) have indicated
that the circumstances of these events are sometimes associated with
the presence of nonlinear aerodynamic flow phenomena, such as
shock-induced separation and shock oscillations (buffet). Cunning-
ham [1] reviewed three incidents of LCO/buffet: LCO driven by
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collected at these tests was used in an aeroelastic simulation. LCO
was simulated at Mach 0.92 and the wing was oscillating at 7.5 Hz at
an angle-of-attack amplitude of 0.1 deg and about a mean angle of
attack of 5.5-7 deg. As indicated by Cunningham [1], these
conditions (namely, the Mach number, frequency, and mean angle of
attack) match the conditions of shock-induced separation and shock
oscillations. However, Cunningham’s studies did not focus on the
mechanism of interaction between the oscillating wing and
oscillating shock waves, but rather on the development of a LCO-
prediction simulation tool.

Edwards et al. [3] presented LCO regions measured at the wind-
tunnel test of a business-jet wing in air and heavy gas at a Mach range
of 0.8-0.95 at various dynamic pressures and at mean angles of
attack of 0.6, 1.6, and 2.1 deg. The authors point to “chimney”
regions in which LCO was detected at a constant Mach number of
about 0.9 for a range of dynamic pressures. These regions are
associated with the first structural bending-mode motion in the
heavy-gas experiments and with the first structural torsion-mode
motion in the air experiments. The authors indicate that the frequency
spectra of the flow showed reduced frequencies that are in the low
range of buffet frequencies. Thus, they speculate that in air, an
interaction mechanism exists between first torsion and buffet,
whereas in heavy gas, the same mechanism exists between the first
bending and buffet. The same business-jet wing was analyzed by
Edwards [4] using a viscous boundary-layer method coupled with a
transonic small-disturbance code. LCO behavior was detected at
Mach 0.88, and the flow over the wing was found to be separating and
reattaching in the outboard span region. The author concluded that
this flow mechanism is responsible for limiting the flutter motion and
leads to LCO.

Knipfer and Schewe [5] performed numerical simulations and
wind-tunnel tests of a two-degree-of-freedom supercritical two-
dimensional section, suspended by springs and dampers, at transonic
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flows. The Navier—Stokes simulation, which used the Baldwin—
Lomax turbulence model, was able to predict the flutter points.
However, as the authors indicate, this turbulence model was
inadequate for assessing boundary-layer interaction and buffet
phenomena. The flutter points of the experiment exhibited limit-
cycle amplitudes, some of which occurred at Mach numbers below
the buffet limit. Thus, the authors concluded that LCO is not caused
by buffet, but rather emerges from classical flutter. Dowell and Tang
[6], and Thomas et al. [7] studied the role of nonlinear aerodynamics
in LCO. They suggested that large shock translations and flow
separation are the main effectors of aerodynamic nonlinearity
leading to LCO. However, the flows they studied were all inherently
stable and did not buffet.

The current study focuses on the relationship between buffet and
airfoil motions and the aerodynamic forces that develop when an
airfoil is oscillated in buffeting flows. This is done by simulating
responses of the flowfield for a NACA0012 airfoil with prescribed
harmonic excitation at flight conditions that exhibit strong shock
oscillations. It is hoped that these time simulations can provide
insight to help answer questions regarding the nature of nonlinear
responses, such as the following: How nonlinear is the transonic
flowfield response of an oscillating wing? Is it nonlinear simply due
to the presence of the shock wave, or is it the shock travel that causes
the response to be nonlinear? How do the airfoil oscillations interact
with the traveling shock? How is the response dependent on
parameters such as Mach number, mean flow angle of attack,
oscillation frequency, angle of attack, and possibly other parameters?
Finally, can wing buffet be a source of LCO? That is, does the
oscillating shock wave excite the wing? Or is wing buffet a
restraining factor that causes flutter to become LCO?

Computational Fluid Dynamics Simulation
The unsteady-flow simulations of this study were performed using
the Elastic Zonal Navier—Stokes Simulation (EZNSS) computational
fluid dynamics (CFD) code [8]. EZNSS is a finite difference code
employing several optional flow solver algorithms and turbulence
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models. The accuracy of the unsteady buffet simulation is dependent
to a great extent on the numerical scheme, the accuracy and
suitability of the turbulence model used, and the choice of run
parameters, such as grid and time step. The algorithm used in this
study is the Steger—Warming algorithm. This algorithm was chosen
as it involves minimal numerical dissipation, which could possibly
quench the studied phenomena. Barakos and Drikakis [9] assessed
the adequacy of several turbulence models for transonic buffet
problems. Using the same wind-tunnel test that is used for validation
in the current study (McDevitt and Okuno [10]) they compared
various turbulent closures, including the algebraic Baldwin—-Lomax
model, the one-equation Spalart—-Allmaras model, linear and
nonlinear k-¢ models, and a nonlinear k-w model version with
constant and functional ¢, coefficients. Barakos and Drikakis [9]
concluded that nonlinear two-equation models in conjunction with a

Table 1 Data sets of McDevitt and Okuno’s wind-tunnel
test used for validation

Set My ay, deg M, o, deg
1 0.75 2 0.751 1.99
4 0.8 1 0.793 1.00
5 0.775 2 0.775 2.05
6 0.725 4 0.726 391

Table 2 Buffet onset frequencies at McDevitt
and Okuno’s [10] wind-tum_lel test (f) and from
simulation (f;,,)

Set Moo o, deg f fsim
1 0.75 4 047 0.45
4 0.80 4 0.38 0.43
5 0.77 4 044 051
6 0.72 6 0.55 0.59




functional ¢, coefficient provide adequate results for transonic buffet
flows. Following the findings of Barakos and Drikakis, the steady
pressure-coefficient distribution at the four wind-tunnel-test cases
reported by McDevitt and Okuno [10] was computed by EZNSS
using two turbulence models: the k-w model and the modified k-w
model [11]. The latter is a recent modification to the k-w model that is
reported by its developer to be suitable for a wider range of mildly
separated flows. Because there is little information available on the
suitability of various turbulence models for unsteady problems, the
strategy in choosing an adequate model was to first check its suita-
bility in the steady case (at an angle of attack at which there is no
buffet) and to then use the best model for the unsteady buffeting case,
comparing the computed buffet parameters with those from wind-
tunnel tests. Results are reported in the Test Case section. Following
validation, further analyses were performed using the modified k-
model.

The computational domain is covered by a C-type grid extending
approximately 18 chords away from the profile. There are 401 grid
points in the chordwise direction, along the profile and its wake, and
75 grid points in the direction perpendicular to the surface. The
distance of the first grid point off of the wall in the perpendicular
direction is 1 x 1073 chords. Adequacy of the computational grid to
the current analysis was established by studying grids of various
dimensions. To verify that the grid extension to the far field is
adequate and that the phenomena observed are not a result of inward
flow reflections from the computational boundaries, some of the
analyses were repeated on a grid extending only 10 chords out. The
flowfield was found to be the same as for the 18-chords-out grid, and
the rest of the analyses were computed with the 18-chords-out grid.
For comparison, Barakos and Drikakis [9] studied the same test case
with a similar-sized grid of 361 by 90 points, extending 7 chords
away from the profile.

Test Case

The test case studied is that of a NACAO0012 section oscillating in
heave and pitch motions. This test case was chosen because there are
ample wind-tunnel-test data in the literature to support code
validation. The issue of code validation is crucial in this study,
because the flows simulated are highly viscous and involve shock/
boundary-layer interaction. It was found during this study that some
of the commonly used CFD algorithms and turbulence models
involve a large amount of numerical dissipation that eliminates, or
significantly alters, the flow phenomena studied. Thus, it was
important to validate the chosen algorithm and turbulence model
using both static and dynamic wind-tunnel-test data.

Validation of CFD results was performed based on wind-tunnel
tests by McDevitt and Okuno [10] and those by Landon [12].
McDevitt and Okuno [10] performed static and dynamic pressure
measurements on a NACA0012 airfoil at Mach numbers of 0.7 to
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0.8, at Reynolds numbers of 1 x 10° to 14 x 10°, and for a range of
angles of attack that include the onset of buffet. In these wind-tunnel
tests, sidewall boundary-layer removal was used to minimize the
sidewall interference effects, such that the resulting streamlines
would closely match those of free air. As a result, the measurements
of McDevitt and Okuno are particularly favorable for CFD code
validation.

Static-pressure data were measured at six combinations of angles
of attack and Mach numbers. Following the recommendation of the
authors, the test data at Reynolds number of approximately 10 x 10°
are used for code evaluation. Table 1 presents the four data sets that
were used for validation in this study. The nominal angle of attack
and Mach number values, denoted by the subscript N, are the values
for which the wind-tunnel walls were tuned. The actual test values
are denoted by M, and «. Figure 1 presents pressure-coefficient
distribution on the upper and lower surfaces of the airfoil for the four
validation data sets. The stars and circles represent measured
pressure coefficients on the upper and lower surfaces, respectively,
and the full lines represent values computed in an EZNSS simulation
with the k-w and modified k- turbulence models. Figure 1 shows
that the modified k- model closely captures the measured pressure-
coefficient distribution for all but set 4. Further unsteady analyses
were therefore performed using the modified k- turbulence model.

McDevitt and Okuno [10] performed an angle-of-attack sweep
about the four nominal sets 1, 4, 5, and 6 to capture the buffet-onset
conditions. Table 2 presents the Mach number and angle of attack at
which buffet phenomena appeared and the buffet’s reduced
frequency. The test reduced frequency f is defined as

2nfc

f=7 )

oo

Buffet conditions were simulated in EZNSS runs by computing the
unsteady responses to a step angle of attack of amplitudes
corresponding to the test buffet angles of attack (as defined in
Table 2). The analyses were started from initial steady-state flow
conditions corresponding to a 0 deg angle of attack at the Table 2
Mach numbers. All tests and simulations were performed at
Reynolds number of 10 x 10°. Table 2 presents the simulated buffet
reduced frequencies f, evaluated from EZNSS simulations
according to Eq. (1) using the CFD reference chord length of 1.
Table 2 results show that the EZNSS simulations capture the reduced
frequency of the buffet phenomena relatively accurately, but they are
less accurate at the higher Mach numbers. This is also consistent with
the static-pressure-coefficient distribution results that are more
accurate at the lower Mach numbers. Therefore, it was decided that
further unsteady simulations will be performed at Mach 0.72.

Another important factor for the accuracy of the simulation is the
simulation time step. The effect of the simulation time step on the
computed responses is discussed in Appendix A.
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Fig. 2 Angle of attack vs a) normal-force coefficient and b) moment coefficient about the quarter-chord in response to sinusoidal excitation at Mach
0.755, o« = 2.51deg, and «,, = 0.016 deg, computed by EZNSS and recorded at Landon’s [12] wind-tunnel test.
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Figure 2 presents validation of prescribed airfoil harmonic
simulations using wind-tunnel experiments of an oscillating
NACAOQ012 airfoil by Landon [12]. Figure 2 presents the normal-
force coefficient and moment coefficient versus angle of attack in
response to prescribed sinusoidal pitching and heaving motions, with
an amplitude of 2.51 deg about a mean angle of attack of 0.016 deg at
a reduced frequency of 0.1628 [based on Eq. (1)] and at a Mach
number of 0.755. EZNSS simulations were performed using time
steps of 0.005 and 0.0005. All numerical simulations yielded similar
results, which reasonably match those of the wind-tunnel tests. The
trend of the correlation between the simulations and wind-tunnel-test
results is similar to those of simulations performed using other CFD
codes, as presented in Fig. 14 of [13].
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Responses to Sinusoidal Heave Excitations

Following code validation, responses to prescribed sinusoidal
heave motions at various conditions were simulated. Figure 3
presents lift- and moment-coefficient responses to heave excitations
of various frequencies for a heave velocity that corresponds to an
angle-of-attack amplitude of 6 deg. The responses were computed at
Mach 0.72, a Reynolds number of 10 x 10°, and about a 0 deg mean
angle of attack. All CFD simulations were performed using a
computational time step of 0.001. At these flow conditions, there is
no buffet at the mean angle of attack. As the oscillatory angle of
attack is increased in the course of the cycle, a shock wave builds up
and oscillates. The cycle’s maximum angle of attack was chosen such
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Fig. 3 Lift coefficient and 10 times the moment coefficient about the quarter-chord vs time in response to sinusoidal excitations at various frequencies;

« =6deg, a,, = 0deg, Mach 0.72, and Re = 10 x 10°.
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that buffet was observed in wind-tunnel tests at a steady angle of
attack of the same magnitude and was simulated successfully by
EZNSS (as discussed in the Test Case section).

Figure 3 presents the effect of the oscillating shock wave on the
aerodynamic lift and moment at different frequencies. At excitation
frequencies that are significantly lower than the buffet frequency
(e.g., Figs. 3aand 3b), fluctuations of the lift and moment coefficients
are observed, which correspond to shock forward and backward
travel. The oscillating shock appears as a higher-frequency response
on top of the heave-oscillation response, but only at those parts of the
cycle at which the angle of attack is above a certain value (also see
Figs. 4a—4c). At low excitation frequencies, the oscillating shock
quenches the aerodynamic coefficient values. At the higher
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excitation frequencies above the buffet frequency (Fig. 3f), the shock
does not seem to affect the response significantly. This is also seen
from Fig. 4, which presents the lift coefficient vs angle of attack. At
an excitation frequency above the buffet frequency (Fig. 4f), the
response seems to display only a single harmonic.

Because the buffet appears only in certain segments of the cycle
and not throughout, its frequency cannot readily be detected by
Fourier analysis. Measured from the peak-to-peak time at the
lowest excitation frequency (Fig. 3a), this frequency f = 0.59,
which is the same buffet frequency that was measured in static
analysis (Table 2).

The simulations of Figs. 3 and 4 suggest the nature of interaction
between the airfoil oscillation and buffet. However, the simulated
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0 50

conditions, those of £6 deg about a 0 deg mean angle of attack, are
not typical of flight aeroelastic phenomena. To study the interaction
of elastic oscillation and buffet, which develop in realistic flight
conditions, the heave forced-oscillation simulation was repeated,
exciting the airfoil at various frequencies and amplitudes, about a
6 deg mean angle of attack, at Mach 0.72, and at a Reynolds number
of 10 x 10°. The mean angle of attack of 6 deg is typical of windup
turns, and the forced-oscillation amplitudes ranging between 0.1 and
1.5 deg are typical of elastic motions at LCO.

Figure 5 presents the time history of the aerodynamic coefficients
in response to a steady angle of attack of 6 deg. The oscillations are
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due to buffet, with a buffet reduced frequency of f = 0.59. The mean
lift coefficient equals 0.5, and the moment coefficient, which is
computed about the quarter-chord, changes its sign as the shock
crosses in front of and behind the quarter-chord point. The airfoil was
oscillated in heave for various frequencies, ranging from below to
above the buffet frequency, with heave velocities that correspond to
angle-of-attack amplitudes of 0.1, 0.5, 1, and 1.5 deg.

A sample response is shown in Fig. 6 that presents the frequency
content of the lift response to prescribed airfoil-motion excitation at a
reduced frequency of f = 0.92, which is above the buffet frequency.
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For small amplitudes of airfoil-motion excitation, the flow system
response exhibits two distinct frequencies: that of the buffet and that
of the excitation. At the lowest amplitudes of excitation
(o« = 0.1 deg, dotted line), most of the response power is in the buf-
fet frequency. As the amplitude of excitation increases (o = 1 deg,
dashed line), there is more power in the excitation frequency and less
power in the buffet frequency. As the amplitude of excitation is
further increased (@ = 1.5 deg, full line), the buffet vanishes and the
system’s response is in the airfoil-motion-excitation frequency only.
Figure 7 presents the time histories of the lift responses that were used
to compute the frequency content of Fig. 6. The time history of the
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airfoil-motion input is also plotted, so that it is easy to observe the
frequency of the response in relation to the frequency of the excita-
tion. Itis seen that at the lower amplitude of airfoil-motion excitation,
the buffet frequency dominates the flow (Fig. 7a). As the amplitude is
increased, both frequencies appear, and the response is beating
(Figs. 7b and 7c). As the amplitude is further increased, the response
assumes the frequency of airfoil-motion excitation (Fig. 7d).
Simulations for prescribed airfoil-motion excitations were
repeated at various frequencies. Figure 8 presents the frequency
content of some of these responses. They all exhibit the same
phenomenon of the buffet frequency fading out with increased
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airfoil-motion amplitude. Figure 8 shows that the closer the airfoil-
motion frequency to the buffet frequency, the smaller the amplitude
that will eliminate the buffet. This is also seen in Fig. 9, which
presents time histories of the lift responses to airfoil-motion
excitations of frequencies ranging from below to above the buffet
frequency, all corresponding to an amplitude of airfoil motion of
1 deg. Atfrequencies significantly lower than the buffet (Figs. 9a and

9b) and significantly higher than the buffet (Figs. 9h-9j), the
response is a combination of the airfoil-motion and buffet
frequencies. At frequencies close to the buffet frequency (Figs. 9d—
9g), this amplitude of airfoil motion is sufficient to suppress the
buffet, and the system response is solely in the airfoil-motion
frequency. Based on this observation, Fig. 10 defines regions of
combinations of frequencies and amplitudes of airfoil-motion
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Fig. 10 Combinations of excitation frequencies and angles of attack
leading to responses in both the excitation and buffet frequencies and in
the excitation frequency only; «, =6deg, Mach 0.72, and
Re =10 x 10°.

excitations for which the system response is in the airfoil-motion-
excitation frequency only and regions in which the response involves
both the buffet and airfoil-motion frequencies. This phenomenon
resembles the lock-in phenomenon found for oscillating cylinders in
shedding flows of low Reynolds numbers [14,15] and, recently, for
the case of a plunging airfoil at a low Reynolds number of 20,000
[16]. These reported lock-in phenomena, however, are all at low
Reynolds numbers and at higher frequencies. To the best of the
author’s knowledge, lock-in was never reported in transonic high-
Reynolds-number flows at frequencies that are within the range of
typical aircraft structural response frequencies.

Another thing to note from Fig. § is that the responses involve
higher harmonics, the first of which is at about double the airfoil-
motion frequency. However, Fig. 8§ shows that as the frequency of
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airfoil-motion excitation grows larger, this higher harmonic has less
power in it. For modeling purposes, this may indicate that at the high
frequencies, the higher harmonics may be neglected.

Focusing on the cases in which the buffet is suppressed and the
system responds in the airfoil-motion-excitation frequency only
(Figs. 9c-9g), we note the following:

1) The lift responses are symmetric about a lift-coefficient value
of 0.5, which is the mean lift-coefficient value of the steady buffeting
flow (see Fig. 5).

2) At airfoil-motion-excitation frequencies below the buffet
(Figs. 9¢c and 9d), the lift response is leading the angle-of-attack
motion, whereas at frequencies above the buffet (Figs. 9f and 9g), the
lift is lagging the angle-of-attack motion. Close to the buffet
frequency, the lift response and angle of attack are in phase.

3) At the lower frequencies (Figs. 9c and 9d), the lift response
is not harmonic. The lift rises gradually with increasing angle of
attack and then drops instantaneously. This phenomenon may
correspond to the high-frequency content shown in Fourier analysis
(Figs. 8a—8d). At airfoil-motion frequencies above the buffet, the lift
response is harmonic, consisting of a single harmonic.

Based on these observations, a simple gain and phase model can be
extracted, as shown in Fig. 11. This model was constructed from the
time histories of responses to « = 1.5deg, assuming that the
responses for this value of excitation include only one harmonic at
the airfoil-motion-excitation frequency. The steady angle of attack
was deduced from the excitation amplitude, and the mean values of
the aerodynamic coefficients at the steady buffeting flow (Fig. 5)
were deduced from the responses. This is not valid when the
frequency of excitation equals the buffet frequency. Nevertheless,
the model of Fig. 11 presents a simple behavior of the aerodynamic
coefficients in the lock-in region. The lift-curve slope peaks near the
buffet frequency and its phase changes signs. The moment-
coefficient-curve slope reduces with frequency and its phase is
180 deg, with the excitation at the buffet frequency. Further study
involving an aeroelastic model is required to determine whether this
has an effect on initiating LCO-type responses.

60
40}...Q

N
20

(=)

Clq Phase [deg]
&5 3
/ /

&
S
'!

-80

200

150 \

100
e

n
(@)

o

Phase [deg]

mou
'

[o2)

(=)

f

-100

-150

200 07 08 09 1 1.1 12 13 14

f/fmﬁel
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The buffet-airfoil-oscillation interaction may be related to the
LCO phenomenon, providing both the excitation force and the
restraining mechanisms, as follows: At flight speeds close to flutter,
at which an elastic mode is becoming only lightly damped, the
unsteady buffet may serve as an external excitation force, initiating
elastic modal oscillations of increasing amplitudes. As the elastic
amplitudes increase, lock-in occurs, and the exciting force is
decreased. Thus, LCO is maintained. For a thorough understanding
of the effect of lock-in phenomenon on LCO, a full aeroelastic
investigation is required, which models the feedback between the
fluid and structural oscillations.

Conclusions

Numerical simulations were conducted to compute the unsteady
flowfields around a NACAO0012 airfoil that is harmonically
oscillating at transonic flow conditions in which large shock
oscillations exist. Aerodynamic lift and moment responses to
prescribed airfoil-motion excitations revealed that there exists an
interaction between the flowfields induced by buffet (shock
oscillations even in the absence of airfoil motion) and those induced
by airfoil oscillations. At low-amplitude airfoil motions and at
frequencies remote from the buffet frequency, the flow exhibits two
separate frequencies: that of the buffet and that of the flow response
to airfoil oscillation. As the amplitude of airfoil motion increases, the
amplitude of the buffet decreases. For airfoil motion at a frequency
close to the buffet frequency, the buffet flow response vanishes even
for small airfoil-motion amplitudes. There is a broad analogy
between the flow physics found in the present study and the flowfield
of the von Kdrméan vortex street found behind a cylinder, with or
without the cylinder undergoing a prescribed oscillation [14,15]. In
particular, the phenomenon of lock-in is found. A more thorough
understanding of the broader implications of the present study for
LCO found in certain aircraft awaits a full aeroelastic investigation
that models the feedback interaction between fluid and structural
oscillations, but it is clear that buffet may play a role in LCO under
certain circumstances.

Appendix A: Effect of the Simulation Time Step on
Buffet Responses

To study the effect of the simulation time step on buffet responses,
simulations were run using computational time steps ranging from
0.00025 to 0.01, where the computational time step 7 is defined as
f = ta,,/c. Figure Al presents time histories of responses to a step
angle of attack of 6 deg at Mach 0.72 (set 6 of Table 2). Figure Al
shows that the unsteady response converges with decreasing time
step and that a computational time step of 0.0005 or smaller is
adequate for these types of analyses.
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Fig. A1 Unsteady response to a step angle of attack of 6 deg at Mach
0.72, computed with various computational time steps.
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Fig. A2 Unsteady response to a step angle of attack of 6 deg at Mach
0.72, computed with and without dual time steps.

Unsteady analyses were also performed using the code’s dual-
time-step option. Comparison of simulations performed using dual
time steps with those computed without this option but with small
time steps is used to ensure that the time integration scheme, which is
first-order, indeed yields converged results. In the dual-time-step
analyses, a user-defined number of subiterations are computed
between two consecutive iterations. A convergence criterion is
imposed that terminates the subiteration process following a residual
decay of several orders of magnitude defined by the user.
Simulations with various parameters (time step, number of
subiterations, and termination criterion) revealed that the
subiteration process has to be converged to approximately 6 orders
of magnitudes to yield realistic results. Figure A2 presents some of
the responses computed with dual time steps with various
parameters, compared with the analysis without the dual-time-step
option. It is seen that by using dual time steps, the CFD simulation
can be accurately performed with time steps up to 40 times larger.
However, the need to perform 30 subiterations for convergence
renders this option computationally expensive and inexpedient. The
dual-time-step analyses serve for validation of the accuracy of the
simulations without this option, and further analyses are performed
without dual time steps, with a small computational time step of
0.0005.
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